Microdialysis approach to study serotonin outflow in mice following selective serotonin reuptake inhibitors and substance P (neurokinin 1) receptor antagonist administration: a review.
نویسندگان
چکیده
Classical antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRIs) display several disadvantages, e.g., the onset of action (2 to 3 weeks) to start clinical benefits is too long, and a significant proportion of patients do not respond to this monotherapy. Several strategies have been proposed to overcome these problems, notably the use of potentiating agents, which combined with SSRIs, augment or accelerate their established antidepressant activity. Recent clinical trials proposed that compounds with dual action on both central serotonin (5-HT) and noradrenaline (NA) systems would have a faster action than SSRIs alone. Preclinical electrophysiological and neurochemical studies demonstrated that the putative new class of antidepressants, substance P (neurokinin 1) NK1 receptor antagonists, enhance brain monoaminergic neurotransmissions by reducing the sensitivity of 5-HT1A autoreceptors in the Dorsal Raphe Nucleus, and possibly alpha2 autoreceptors in the Locus Coeruleus. However, in several clinical studies, a similar delay of therapeutic effects has been reported with NK1 receptor antagonists and SSRIs. Recently intracerebral in vivo microdialysis studies were performed to examine the effects of genetic or pharmacological blockade of Substance P (SP)/ NK1 neurotransmission on SSRIs-induced increases in extracellular 5-HT levels in awake, freely moving mice. New evidences suggest that the combination of a NK1 receptor antagonist with a SSRI should benefit to depressed patients. This review describes our current knowledge of the role of SP and its preferred NK1 receptors mainly in the modulation of brain serotonergic activity.
منابع مشابه
Antidepressant-like activity of selective serotonin reuptake inhibitors combined with a NK1 receptor antagonist in the mouse forced swimming test.
Substance P antagonists of the neurokinin-1 receptor type (NK1) have growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurons. In line with this assumption, previous intracerebral in vivo microdialysis experiments provided evidence that the NK1 receptor antagonists d...
متن کاملExtracellular serotonin in the prefrontal cortex is limited through terminal 5-HT1B autoreceptors
Rationale: 5-HT autoreceptors regulate extracellular 5-HT levels and have been suggested to limit the effects of acute treatment with selective serotonin reuptake inhibitors (SSRI). Objectives: The role of terminal 5-HT1B autoreceptors was assessed by comparing the effects of a SSRI on extracellular 5-HT in wildtype and 5-HT1B receptor knockout mice, and by using a 5-HT1B receptor antagonist. S...
متن کاملBlockade of substance P (neurokinin 1) receptors enhances extracellular serotonin when combined with a selective serotonin reuptake inhibitor: an in vivo microdialysis study in mice.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal ...
متن کاملSustained pharmacological blockade of NK1 substance P receptors causes functional desensitization of dorsal raphe 5-HT 1A autoreceptors in mice.
Antagonists at NK1 substance P receptors have demonstrated similar antidepressant properties in both animal paradigms and in human as selective serotonin reuptake inhibitors (SSRIs) that induce desensitization of 5-HT 1A autoreceptors within the dorsal raphe nucleus (DRN). We investigated whether this receptor adaptation also occurs upon NK1 receptor blockade. C57B/L6J mice were treated for 21 ...
متن کاملSubstance P neurokinin 1 receptor activation within the dorsal raphe nucleus controls serotonin release in the mouse frontal cortex.
Preclinical studies suggest that substance P (SP) neurokinin 1 (NK1) receptor antagonists are efficient in the treatment of anxiety and depression. This therapeutic activity could be mediated via stimulation of serotonin (5-HT) neurons located in the dorsal raphe nucleus (DRN), which receive important SP-NK1 receptor immunoreactive innervations. The present study examined the effects of intrara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current drug targets
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2006